

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Physics (WPH15) Paper 01 Thermodynamics, Radiation, Oscillations and Cosmology

Question Number	Answer			
1	D is the only correct answer (density and surface temperature both increase)	1		
	A is not the correct answer, as surface temperature and density increases			
	B is not the correct answer, as density increases			
2	C is not the correct answer, as surface temperature increases D is the only correct answer (trigonometric parallax)	1		
	A is not the correct answer, as Doppler shift lets relative motion be determined B is not the correct answer, as an HR-diagram shows luminosity v temperature			
	C is not the correct answer, as Hubble's law applies to galaxies			
3	A is the only correct answer (4E)	1		
	B is not the correct answer, as $E_k = \frac{1}{2}mv^2$ and $v_{max} = \omega A$			
	C is not the correct answer, as $E_k = \frac{1}{2}mv^2$ and $v_{max} = \omega A$			
	D is not the correct answer, as $E_k = \frac{1}{2}mv^2$ and $v_{max} = \omega A$			
4	C is the only correct answer (mass will oscillate at the frequency of the	1		
	vibration generator.)			
	A is not the correct answer, as the amplitude is only a maximum for resonance			
	B is not the correct answer, as the mass is forced to oscillate at the vibrator			
	frequency D is not the correct answer, as the energy transfer is only a maximum for			
	resonance			
5	D is the only correct answer (we cannot predict when a decay will take	1		
	place)			
	A is not the correct answer, as "natural" is not the same as "random"			
	B is not the correct answer, as "spontaneous" is not the same as "random"			
(C is not the correct answer, as this defines "spontaneous"	1		
6	A is the only correct answer (gravitational force and velocity both decrease)	1		
	B is not the correct answer, as velocity decreases			
	C is not the correct answer, as gravitational force decreases D is not the correct answer, as gravitational force and velocity decrease			
7	B is the only correct answer (red dwarf star)	1		
	A is not the correct answer, as these have high luminosity and high temperature			
	C is not the correct answer, as these have a high luminosity			
	D is not the correct answer, as these have a high temperature			
8	A is the only correct answer $(\frac{1}{\sqrt{2}})$	1		
	B is not the correct answer, as $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$			
	C is not the correct answer, as $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$			
	D is not the correct answer, as $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$			
9	^	1		
	C is the only correct answer 0			
10		1		
	\uparrow \sim \sim			
	B is the only correct answer 0			
	B is the only correct answer 0			

Question Number	Answer		Mark
11	EITHER $(V_{\text{grav}} = \frac{-GM}{r}, \text{ so})$ gravitational potential $\propto \frac{1}{r}$ Or $V_{\text{grav}} = \frac{-GM}{r}$ and G and M are constant	(1)	
	[Allow a graph or a description in words to describe an inverse relationship as long as potential equation is given] The equipotential surfaces become further apart with increasing distance (from Earth)	(1)	
	OR Equal work needed to transfer a body from X to Y and from Y to Z	(1)	
	(Mean) gravitational force is larger between X and Y, so distance moved must be smaller	(1)	2
	Total for question 11		2

Question Number	Answer	Mark
12	Use of $g = \frac{GM}{r^2}$ (1)	
	Use of $W = mg$ (1)	
	$W = 77 \text{ N} \tag{1}$	3
	$g = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 3.40 \times 10^{21} \text{ kg}}{(7.88 \times 10^5 \text{ m})^2} = 0.365 \text{ N kg}^{-1}$	
	$F = 210 \text{ kg} \times 0.365 \text{ N kg}^{-1} = 76.7 \text{ N}$	
	Total for question 12	3

Question Number	Answer		Mark
13(a)	<u>Upthrust</u> on airship is equal to the <u>weight</u> of the airship	(1)	
	(so) resultant force on the airship is zero (so airship floats in the air) Or (vertically) balanced forces act on the airship If neither MP seen, max 1 mark for statement indicating that upwards force is equal to downwards force.	(1)	2
13(b)	Use of $pV = NkT$	(1)	
	Conversion of temperature to K	(1)	
	Use of $M = Nm$	(1)	
	M = 1200 kg	(1)	4
	Example of calculation $N = \frac{pV}{kT} = \frac{1.08 \times 10^5 \text{ Pa} \times 7020 \text{ m}^3}{1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1} \times (273 + 25) \text{ K}} = 1.84 \times 10^{29}$		
	$M = 1.84 \times 10^{29} \times 6.64 \times 10^{-27} \text{ kg} = 1220 \text{ kg}$		
	Total for question 13		6

Question Number	Answer		Mark
14(a)	The alpha radiation will not penetrate the lead Or The lead will absorb the alpha radiation	(1)	1
14(b)	EITHER		
	Determine the background count (rate)	(1)	
	Subtract background count (rate) from the recorded count (rate) to eliminate systematic error On Subtract background count from the recorded count to prevent the count.		
	Or Subtract background count from the recorded count to prevent the count rate being overestimated	(1)	
	OR		
	Record the count for a longer time interval Or Record the count more than once and calculate a mean value	(1)	
	This will reduce the effect of random variation on the count rate Or this will decrease the percentage uncertainty	(1)	2
14(c)	EITHER		
	One pair of values read from <u>curve</u>	(1)	
	Use of $R = 60e^{-\mu x}$ with values read from graph	(1)	
	$\mu = 0.30 \text{ cm}^{-1} \rightarrow 0.36 \text{ cm}^{-1}$	(1)	
	OR		
	Tangent drawn at $x = 0$	(1)	
	1/(x-intercept of tangent) determined Or gradient of tangent divided by y-intercept (R ₀) [MP2 dependent on MP1]	(1)	
	$\mu = 0.30 \text{ cm}^{-1} \rightarrow 0.39 \text{ cm}^{-1}$	(1)	3
	[Accept μ in m ⁻¹]		
	$\frac{\text{Example of calculation}}{\ln R = \ln 60 - \mu x}$		
	$\therefore \mu = \frac{\ln 60 - \ln R}{x} = \frac{4.094 - \ln 43}{1.0} = 0.333 \text{ cm}^{-1}$		
	Total for question 14		6

Question Number	Answer		Mark
15(a)	Use of $\Delta E = mL$	(1)	
	Use of $\Delta E = mc\Delta\theta$	(1)	3
	$\Delta E = 1.32 \times 10^{11} (\text{J})$	(1)	
	Example of calculation $\Delta E = 3.53 \times 10^5 \text{kg} \times 3.36 \times 10^5 \text{ J kg}^{-1} = 1.19 \times 10^{11} \text{ J}$		
	$\Delta E = 3.53 \times 10^5 \text{ kg} \times 2.09 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \times (0 - (-18)) \text{ K}$ = 1.33 × 10 ¹⁰ J		
	$\Delta E = 1.19 \times 10^{11} \text{ J} + 1.33 \times 10^{10} \text{ J} = 1.319 \times 10^{11} \text{ J}$		
15(b)	Surface area of top of ice floe calculated [453 m ²]	(1)	
	Intensity at sea level calculated using 56% [767 W m ⁻²]	(1)	
	Use of $I = \frac{P}{A}$	(1)	
	Use of $P = \frac{\Delta W}{\Delta t}$	(1)	
	t = 4.4 days [4.3 days if "show that" value used] (ecf from (a)) $\mathbf{Or} \ E = 2.10 \times 10^{11} \mathrm{J} \ \text{for 7 days}$	(1)	
	4.4 days is less than 7 days so claim is not correct Or $1.32 \times 10^{11} \text{ J} < 2.10 \times 10^{11} \text{ J}$ so claim is not correct Or Correct conclusion based on comparison of candidate's calculated values	(1)	6
	Example of calculation $P = 0.56 \times 1370 \text{ W m}^{-2} \times 453 \text{ m}^2 = 3.48 \times 10^5 \text{ W}$		
	$t = \frac{1.32 \times 10^{11} \text{J}}{3.48 \times 10^5 \text{J s}^{-1}} = 3.79 \times 10^5 \text{s}$		
	$t = \frac{3.79 \times 10^5 \text{ s}}{8.64 \times 10^4 \text{ s day}^{-1}} = 4.39 \text{ days}$		
	Total for question 15		9

Question Number	Answer		Mark
16(a)	Use of $I = \frac{L}{4\pi d^2}$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	Use of $A = 4\pi r^2$	(1)	
	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	$\lambda_{\text{max}} = 5.64 \times 10^{-7} \text{m}$	(1)	5
	$\frac{\text{Example of calculation}}{1.05 \times 10^{-9} \text{ W m}^{-2}} = \frac{L}{4\pi \times (9.94 \times 10^{16} \text{ m})^2}$ $L = 4\pi \times (9.94 \times 10^{16} \text{ m})^2 \times 1.05 \times 10^{-9} \text{ W m}^{-2} = 1.30 \times 10^{26} \text{ W}$ $A = 4\pi \times (5.12 \times 10^8 \text{ m})^2 = 3.29 \times 10^{18} \text{ m}^2$ $1.30 \times 10^{26} \text{ W} = 5.67 \times 10^{-8} \text{W m}^{-2} \text{K}^{-4} \times 3.29 \times 10^{18} \text{ m}^2 \times T^4$ $T = \sqrt[4]{\frac{1.30 \times 10^{26} \text{ W}}{5.67 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4} \times 3.29 \times 10^{18} \text{ m}^2}} = 5140 \text{ K}$ $\lambda_{\text{max}} = \frac{2.898 \times 10^{-3} \text{ m K}}{5140 \text{ K}} = 5.64 \times 10^{-7} \text{ m}$		
16(b)	Use of $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ [Allow a 2 step approach using a calculation of the red shift, z] $\Delta \lambda = 0.025 \text{ nm}$	(1)	
	0.025 (nm) < 0.05 (nm), so no wavelength change could be detected Or comparison of calculated value with 0.05 (nm) and consistent conclusion made.	(1)	3
	$\frac{\text{Example of calculation}}{\Delta \lambda} = \frac{1.55 \times 10^4 \text{ m s}^{-1}}{3.00 \times 10^8 \text{ m s}^{-1}}$ $\Delta \lambda = 480 \text{ nm} \times 5.17 \times 10^{-5} = 0.0248 \text{ nm}$		
	Total for question 16		8

Question Number	Answer	Mark
17(a)	Top line correct (1) Bottom line correct (1)	2
	$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu_{e}}$	
17(b)(i)	Calculation of total activity (1)	
	Conversion of half life to seconds (1)	
	Use of $\lambda t_{1/2} = \ln 2$ (1)	
	Use of $A = \lambda N$ (1)	
	Use of $M = N \times m$ (1)	
	$M = 7.3 \times 10^{-10} \text{ kg}$ $\mathbf{Or} \ M = 4.1 \times 10^{17} \text{ GeV/c}^2$ (1)	6
	Example of calculation	
	$A = 51.8 \times 10^6 \text{ s}^{-1} \times 65 \text{ kg} = 3.37 \times 10^9 \text{ Bq}$	
	$\lambda = \frac{\ln 2}{8.02 \times 24 \times 3600 \mathrm{s}} = 1.00 \times 10^{-6} \mathrm{s}^{-1}$	
	$N = \frac{3.37 \times 10^9 \text{ Bq}}{1.00 \times 10^{-6} \text{ s}^{-1}} = 3.37 \times 10^{15}$	
	$m = \frac{122 \times 10^9 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1}}{(3.00 \times 10^8 \text{ m s}^{-1})^2} = 2.17 \times 10^{-25} \text{ kg}$	
	$\therefore M = 3.37 \times 10^{15} \times 2.17 \times 10^{-25} \text{ kg} = 7.31 \times 10^{-10} \text{ kg}$	
17(b)(ii)	Use of $A = A_0 e^{-\lambda t}$ with $A = 2.35$ GBq (1)	
	$A_0 = 2.6 \text{ GBq (ecf from (b)(i) for value of } \lambda) $ (1)	2
	Example of calculation 2.35 GBq = $A_0 e^{-1.00 \times 10^{-6} s^{-1} \times 24 \times 3600 s}$	
	$A_0 = \frac{2.35 \text{ GBq}}{e^{-1.00 \times 10^{-6} \text{ s}^{-1} \times 24 \times 3600 \text{ s}}} = 2.56 \text{ GBq}$	
	Total for question 17	10

Question Number	Answer		Mark
18(a)	Gravitational force equated to centripetal force	(1)	
	Substitution of $\omega = \frac{2\pi}{T}$ Or Substitution of $v = \frac{2\pi r}{T}$	(1)	
	Algebra to obtain required expression	(1)	3
	$\frac{\text{Example of derivation}}{m\omega^2 r = \frac{GMm}{r^2}}$		
	$m\left(\frac{2\pi}{T}\right)^2 r = \frac{GMm}{r^2}$		
	$T^2 = \frac{4\pi^2}{GM}r^3$		
18(b)(i)	Use of $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	$T = 8.3 \times 10^{15} (s)$	(1)	2
	Example of calculation		
	$T = \sqrt{\frac{4\pi^2 \times (5.7 \times 10^{20} \text{ m})^3}{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 8.0 \times 10^{11} \times 1.99 \times 10^{30} \text{ kg}}}$		
	$\therefore T = 8.30 \times 10^{15} \text{ s}$		
18(b)(ii)	The actual period is (much) smaller than the calculated value	(1)	
	So the mass of the galaxy must be greater than 8.0×10^{11} solar masses [accept the given mass for the numerical value] Or the gravitational force on the star must be bigger (than assumed)	(1)	
	There must be matter that does not emit em-radiation Or There must be matter that we cannot detect via em-radiation [Accept "there must be matter that we cannot see"]	(1)	
	(This suggests that) there is dark matter	(1)	4
	Total for question 18		9

Question Number	Answer		Mark
19(a)(i)	Mass defect calculated	(1)	
	Conversion between u and kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 4.27 \times 10^{-12} (\mathrm{J})$	(1)	4
	Example of calculation Mass defect = $(4 \times 1.0078 \text{ u}) - 4.0026 \text{ u} = 0.0286 \text{ u}$		
	Mass defect = $0.0286 \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 4.75 \times 10^{-29} \text{ kg}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 4.75 \times 10^{-29} \text{ kg} = 4.27 \times 10^{-12} \text{ J}$		
19(a)(ii)	Use of 10% with mass, energy or power [or in final comparison]	(1)	
	Energy released per fusion used (ecf from (a)(i))	(1)	
	Use of 1 u = 1.66×10^{-27} kg to obtain mass of 4 protons	(1)	
	Use of 1 year = $3.15 \times 10^7 \text{ s}$	(1)	
	$t = 7 \times 10^9$ year, which is less than 9×10^9 year so claim inaccurate		
	Or $P = 3.13 \times 10^{26}$ W, which is less than 3.83×10^{26} W so claim inaccurate		
	Or $E = 8.87 \times 10^{43}$ J, which is less than 1.09×10^{44} J so claim inaccurate Or 12% of hydrogen used, which is greater than 10%, so claim is inaccurate	(1)	5
	[Must see unit for calculated value somewhere in the solution]		
	Example of calculation $L = (\text{energy released per helium nucleus formed}) \times (\text{rate of fusion})$ $3.83 \times 10^{26} \text{ W}$		
	(rate of fusion) = $\frac{3.83 \times 10^{26} \text{ W}}{4.27 \times 10^{-12} \text{ J}} = 8.97 \times 10^{37} \text{ s}^{-1}$		
	mass per second = $8.97 \times 10^{37} \text{ s}^{-1} \times 4 \times 1.0078 \times 1.66 \times 10^{-27} \text{ kg}$ = $6.00 \times 10^{11} \text{ kg s}^{-1}$		
	time = $\frac{0.1 \times 1.39 \times 10^{30} \text{ kg}}{6.00 \times 10^{11} \text{ kg s}^{-1}} = 2.32 \times 10^{17} \text{ s}$		
	time = $\frac{2.32 \times 10^{17} \text{s}}{3.15 \times 10^7 \text{s year}^{-1}} = 7.35 \times 10^9 \text{ year}$		
	["show that" value gives 7.35×10^9 year]		

*19(b)	This question assesses a student's ability to show a coherent and logically
	structured answer with linkages and fully-sustained reasoning. Marks are
	awarded for indicative content and for how the answer is structured and shows
	lines of reasoning. The following table shows how the marks should be awarded
	for indicative content.

IC points	IC mark	Max linkage mark	Max final mark
6	4	2	6
5	3	2	5
4	3	1	4
3	2	1	3
2	2	0	2
1	1	0	1
0	0	0	0

The following table shows how the marks should be awarded for structure and lines of reasoning.

	Number of marks awarded
	for structure of answer and
	sustained line of reasoning
Answer shows a coherent and logical	2
structure with linkages and fully sustained	2
lines of reasoning demonstrated throughout	
Answer is partially structured with some	1
linkages and lines of reasoning	
Answer has no linkages between points and	0
is unstructured	

Indicative content

- IC1 Hydrogen fusion occurs in the core of the (main sequence) star
- IC2 Hydrogen (in the core) runs out
- IC3 The rate of fusion decreases and the star contracts
- IC4 The temperature rises (in the core) and fusion of helium begins
- IC5 The star expands (and cools) to form a red giant star
- IC6 (Helium) fusion stops and the star collapses to a white dwarf star **Or** helium runs out and the star collapses to a white dwarf star

Total for question 19

6

15

Question Number	Answer		Mark
20(a)	There is a (resultant) acceleration / force that is proportional to the displacement from the equilibrium position	(1)	
		` ,	2
	and (always) acting towards the equilibrium position	(1)	2
	(An equation with symbols defined correctly is a valid response for both marks		
	For equilibrium position accept: undisplaced point / position or fixed point / position or central point / position)		
20(b)(i)	Match the natural frequency (of the dampers) to the driving frequency	(1)	
	So that there is an efficient / maximum transfer of energy (to the dampers)	(1)	2
20(b)(ii)	Use of $\rho = \frac{m}{V}$	(1)	
	Use of $T = 1/f$	(1)	
	Use of $T = 2\pi \sqrt{\frac{m}{k}}$	(1)	
	$k = 3.1 \times 10^5 \text{ N m}^{-1}$	(1)	4
	Example of calculation $m = (5.20 \text{ m})^2 \times 0.90 \text{ m} \times 11300 \text{ kg m}^{-3} = 2.75 \times 10^5 \text{ kg}$		
	$T = \frac{1}{f} = \frac{1}{0.17 \text{ Hz}} = 5.88 \text{ s}$		
	$k = \frac{4\pi^2 m}{T^2} = \frac{4\pi^2 \times 2.75 \times 10^5 \text{ kg}}{(5.88 \text{ s})^2} = 3.14 \times 10^5 \text{ N m}^{-1}$		
20(b)(iii)	MAX 2		
	The motion of the box is (strongly) damped	(1)	
	Amplitude at resonance is small	(1)	
	Lead box has a large mass/inertia	(1)	
	A large force is needed to set box into motion	(1)	2
20(c)	Work is done (by roller) as oil is forced through the holes	(1)	
	So energy is transferred from the building (and not returned) Or energy is transferred to the surroundings (and not returned) [Accept "dissipated" for "transferred to surroundings"]	(1)	2
	Total for question 20		12